Subset Sum Problem

Given a set of non-negative integers, and a value sum, determine if there is a subset of the given set with sum equal to given sum.
Example:

Input:  set[] = {3, 34, 4, 12, 5, 2}, sum = 9
Output:  True  //There is a subset (4, 5) with sum 9.


We can solve the problem in Pseudo-polynomial time using Dynamic programming. We create a boolean 2D table subset[][] and fill it in bottom up manner. The value of subset[i][j] will be true if there is a subset of set[0..j-1] with sum equal to i., otherwise false. Finally, we return subset[sum][n]


// A Dynamic Programming solution for subset sum problem
#include <stdio.h>
   
// Returns true if there is a subset of set[] with sun equal to given sum
bool isSubsetSum(int set[], int n, int sum)
{
    // The value of subset[i][j] will be true if there is a 
    // subset of set[0..j-1] with sum equal to i
    bool subset[n+1][sum+1];
   
    // If sum is 0, then answer is true
    for (int i = 0; i <= n; i++)
      subset[i][0] = true;
   
    // If sum is not 0 and set is empty, then answer is false
    for (int i = 1; i <= sum; i++)
      subset[0][i] = false;
   
     // Fill the subset table in botton up manner
     for (int i = 1; i <= n; i++)
     {
       for (int j = 1; j <= sum; j++)
       {
         if(j<set[i-1])
         subset[i][j] = subset[i-1][j];
         if (j >= set[i-1])
           subset[i][j] = subset[i-1][j] || 
                                 subset[i - 1][j-set[i-1]];
       }
     }
   
     /*   // uncomment this code to print table
     for (int i = 0; i <= n; i++)
     {
       for (int j = 0; j <= sum; j++)
          printf ("%4d", subset[i][j]);
       printf("\n");
     }*/
   
     return subset[n][sum];
}
   
// Driver program to test above function
int main()
{
  int set[] = {3, 34, 4, 12, 5, 2};
  int sum = 9;
  int n = sizeof(set)/sizeof(set[0]);
  if (isSubsetSum(set, n, sum) == true)
     printf("Found a subset with given sum");
  else
     printf("No subset with given sum");
  return 0;
}


// A Dynamic Programming solution for subset
// sum problem
class GFG {
      
    // Returns true if there is a subset of 
    // set[] with sun equal to given sum
    static boolean isSubsetSum(int set[], 
                             int n, int sum)
    {
        // The value of subset[i][j] will be
        // true if there is a subset of 
        // set[0..j-1] with sum equal to i
        boolean subset[][] = 
                     new boolean[sum+1][n+1];
      
        // If sum is 0, then answer is true
        for (int i = 0; i <= n; i++)
            subset[0][i] = true;
      
        // If sum is not 0 and set is empty,
        // then answer is false
        for (int i = 1; i <= sum; i++)
            subset[i][0] = false;
      
        // Fill the subset table in botton
        // up manner
        for (int i = 1; i <= sum; i++)
        {
            for (int j = 1; j <= n; j++)
            {
                subset[i][j] = subset[i][j-1];
                if (i >= set[j-1])
                subset[i][j] = subset[i][j] || 
                     subset[i - set[j-1]][j-1];
            }
        }
      
        /* // uncomment this code to print table
        for (int i = 0; i <= sum; i++)
        {
        for (int j = 0; j <= n; j++)
            System.out.println (subset[i][j]);
        } */
      
        return subset[sum][n];
    }
  
    /* Driver program to test above function */
    public static void main (String args[])
    {
        int set[] = {3, 34, 4, 12, 5, 2};
        int sum = 9;
        int n = set.length;
        if (isSubsetSum(set, n, sum) == true)
            System.out.println("Found a subset"
                          + " with given sum");
        else
            System.out.println("No subset with"
                               + " given sum");
    }
}
  
/* This code is contributed by Rajat Mishra */
Output:
Found a subset with given sum
Time complexity of the above solution is O(sum*n).



# A Dynamic Programming solution for subset sum problem
# Returns true if there is a subset of 
# set[] with sun equal to given sum 
  
# Returns true if there is a subset of set[] 
# with sun equal to given sum
def isSubsetSum(set,n,sum):
      
    # The value of subset[i][j] will be 
    # true if there is a
    # subset of set[0..j-1] with sum equal to i
    subset=([[False for i in range(sum+1)] 
            for i in range(n+1)])
      
    # If sum is 0, then answer is true 
    for i in range(n+1):
        subset[i][0] = True
          
        # If sum is not 0 and set is empty, 
        # then answer is false 
        for i in range(1,sum+1):
            subset[0][i]=False
              
        # Fill the subset table in botton up manner
        for i in range(1,n+1):
            for j in range(1,sum+1):
                if j<set[i-1]:
                    subset[i][j] = subset[i-1][j]
                if j>=set[i-1]:
                    subset[i][j] = (subset[i-1][j] or 
                                   subset[i - 1][j-set[i-1]])
      
        # uncomment this code to print table 
        # for i in range(n+1):
        # for j in range(sum+1):
        #     print (subset[i][j],end=" ")
        # print()
    return subset[n][sum]
          
# Driver program to test above function
if __name__=='__main__':
    set = [3, 34, 4, 12, 5, 2]
    sum = 9
    n =len(set)
    if (isSubsetSum(set, n, sum) == True):
        print("Found a subset with given sum")
    else:
        print("No subset with given sum")
          
# This code is contributed by 
# sahil shelangia. 
Output:
Found a subset with given sum
Time complexity of the above solution is O(sum*n).


https://www.youtube.com/watch?v=dJmyfFC3-3A


Comments

Popular posts from this blog

Important Program Collection

[16 Feb 2020] Given an array where every element occurs three times, except one element which occurs only once.

Which data structure is used in redo-undo feature?