Typical Programs Collections

[20 Feb 2020]
https://www.programcreek.com/2014/07/leetcode-palindrome-linked-list-java/

[1] Find maximum in a stack in O(1) time and O(1) extra space
Given a stack of integers. The task is to design a special stack such that maximum element can be found in O(1) time and O(1) extra space.

Examples:

Given Stack :
2
5
1
64   --> Maximum

So Output must be 64 when getMax() is called.

// C++ program to implement a stack that supports
// getMaximum() in O(1) time and O(1) extra space.
#include <bits/stdc++.h>
using namespace std;

// A user defined stack that supports getMax() in
// addition to push() and pop()
struct MyStack {
    stack<int> s;
    int maxEle;

    // Prints maximum element of MyStack
    void getMax()
    {
        if (s.empty())
            cout << "Stack is empty\n";

        // variable maxEle stores the maximum element
        // in the stack.
        else
            cout << "Maximum Element in the stack is: "
                 << maxEle << "\n";
    }

    // Prints top element of MyStack
    void peek()
    {
        if (s.empty()) {
            cout << "Stack is empty ";
            return;
        }

        int t = s.top(); // Top element.

        cout << "Top Most Element is: ";

        // If t < maxEle means maxEle stores
        // value of t.
        (t > maxEle) ? cout << maxEle : cout << t;
    }

    // Remove the top element from MyStack
    void pop()
    {
        if (s.empty()) {
            cout << "Stack is empty\n";
            return;
        }

        cout << "Top Most Element Removed: ";
        int t = s.top();
        s.pop();

        // Maximum will change as the maximum element
        // of the stack is being removed.
        if (t > maxEle) {
            cout << maxEle << "\n";
            maxEle = 2 * maxEle - t;
        }

        else
            cout << t << "\n";
    }

    // Removes top element from MyStack
    void push(int x)
    {
        // Insert new number into the stack
        if (s.empty()) {
            maxEle = x;
            s.push(x);
            cout << "Number Inserted: " << x << "\n";
            return;
        }

        // If new number is less than maxEle
        if (x > maxEle) {
            s.push(2 * x - maxEle);
            maxEle = x;
        }

        else
            s.push(x);

        cout << "Number Inserted: " << x << "\n";
    }
};

// Driver Code
int main()
{
    MyStack s;
    s.push(3);
    s.push(5);
    s.getMax();
    s.push(7);
    s.push(19);
    s.getMax();
    s.pop();
    s.getMax();
    s.pop();
    s.peek();

    return 0;
}
Output:
Number Inserted: 3
Number Inserted: 5
Maximum Element in the stack is: 5
Number Inserted: 7
Number Inserted: 19
Maximum Element in the stack is: 19
Top Most Element Removed: 19
Maximum Element in the stack is: 7
Top Most Element Removed: 7
Top Most Element is: 5

[2] Design a stack that supports getMin() in O(1) time and O(1) extra space
Question: Design a Data Structure SpecialStack that supports all the stack operations like push(), pop(), isEmpty(), isFull() and an additional operation getMin() which should return minimum element from the SpecialStack. All these operations of SpecialStack must be O(1). To implement SpecialStack, you should only use standard Stack data structure and no other data structure like arrays, list, .. etc.

Example:

Consider the following SpecialStack
16  --> TOP
15
29
19
18

When getMin() is called it should return 15,
which is the minimum element in the current stack.

If we do pop two times on stack, the stack becomes
29  --> TOP
19
18

When getMin() is called, it should return 18
which is the minimum in the current stack.

// C++ program to implement a stack that supports
// getMinimum() in O(1) time and O(1) extra space.
#include <bits/stdc++.h>
using namespace std;

// A user defined stack that supports getMin() in
// addition to push() and pop()
struct MyStack
{
    stack<int> s;
    int minEle;

    // Prints minimum element of MyStack
    void getMin()
    {
        if (s.empty())
            cout << "Stack is empty\n";

        // variable minEle stores the minimum element
        // in the stack.
        else
            cout <<"Minimum Element in the stack is: "
                 << minEle << "\n";
    }

    // Prints top element of MyStack
    void peek()
    {
        if (s.empty())
        {
            cout << "Stack is empty ";
            return;
        }

        int t = s.top(); // Top element.

        cout << "Top Most Element is: ";

        // If t < minEle means minEle stores
        // value of t.
        (t < minEle)? cout << minEle: cout << t;
    }

    // Remove the top element from MyStack
    void pop()
    {
        if (s.empty())
        {
            cout << "Stack is empty\n";
            return;
        }

        cout << "Top Most Element Removed: ";
        int t = s.top();
        s.pop();

        // Minimum will change as the minimum element
        // of the stack is being removed.
        if (t < minEle)
        {
            cout << minEle << "\n";
            minEle = 2*minEle - t;
        }

        else
            cout << t << "\n";
    }

    // Removes top element from MyStack
    void push(int x)
    {
        // Insert new number into the stack
        if (s.empty())
        {
            minEle = x;
            s.push(x);
            cout <<  "Number Inserted: " << x << "\n";
            return;
        }

        // If new number is less than minEle
        if (x < minEle)
        {
            s.push(2*x - minEle);
            minEle = x;
        }

        else
           s.push(x);

        cout <<  "Number Inserted: " << x << "\n";
    }
};

// Driver Code
int main()
{
    MyStack s;
    s.push(3);
    s.push(5);
    s.getMin();
    s.push(2);
    s.push(1);
    s.getMin();
    s.pop();
    s.getMin();
    s.pop();
    s.peek();

    return 0;
}

Output:
Number Inserted: 3
Number Inserted: 5
Minimum Element in the stack is: 3
Number Inserted: 2
Number Inserted: 1
Minimum Element in the stack is: 1
Top Most Element Removed: 1
Minimum Element in the stack is: 2
Top Most Element Removed: 2
Top Most Element is: 5

[3] Find duplicates in O(n) time and O(1) extra space | Set 1
Given an array of n elements which contains elements from 0 to n-1, with any of these numbers appearing any number of times. Find these repeating numbers in O(n) and using only constant memory space.
For example, let n be 7 and array be {1, 2, 3, 1, 3, 6, 6}, the answer should be 1, 3 and 6.
// C++ code to find
// duplicates in O(n) time
#include <bits/stdc++.h>
using namespace std;

// Function to print duplicates
void printRepeating(int arr[], int size)
{
int i;
cout << "The repeating elements are:" << endl;
for (i = 0; i < size; i++)
{
if (arr[abs(arr[i])] >= 0)
arr[abs(arr[i])] = -arr[abs(arr[i])];
else
cout << abs(arr[i]) << " ";
}
}

// Driver Code
int main()
{
    int arr[] = {1, 2, 3, 1, 3, 6, 6};
    int arr_size = sizeof(arr)/sizeof(arr[0]);
    printRepeating(arr, arr_size);
    return 0;
}

// This code is contributed
// by Akanksha Rai
Output:

The repeating elements are:
1  3  6
Note: The above program doesn’t handle 0 case (If 0 is present in array). The program can be easily modified to handle that also. It is not handled to keep the code simple.

Time Complexity: O(n)
Auxiliary Space: O(1)

[4] Maximum Product Subarray
Given an array that contains both positive and negative integers, find the product of the maximum product subarray. Expected Time complexity is O(n) and only O(1) extra space can be used.
Examples:

Input: arr[] = {6, -3, -10, 0, 2}
Output:   180  // The subarray is {6, -3, -10}

Input: arr[] = {-1, -3, -10, 0, 60}
Output:   60  // The subarray is {60}

Input: arr[] = {-2, -3, 0, -2, -40}
Output:   80  // The subarray is {-2, -40}
// C++ program to find Maximum Product Subarray
#include <bits/stdc++.h>
using namespace std;

/* Returns the product of max product subarray.
Assumes that the given array always has a subarray
with product more than 1 */
int maxSubarrayProduct(int arr[], int n)
{
    // max positive product ending at the current position
    int max_ending_here = 1;

    // min negative product ending at the current position
    int min_ending_here = 1;

    // Initialize overall max product
    int max_so_far = 1;
    int flag = 0;
    /* Traverse through the array. Following values are
    maintained after the i'th iteration:
    max_ending_here is always 1 or some positive product
                    ending with arr[i]
    min_ending_here is always 1 or some negative product
                    ending with arr[i] */
    for (int i = 0; i < n; i++) {
        /* If this element is positive, update max_ending_here.
        Update min_ending_here only if min_ending_here is
        negative */
        if (arr[i] > 0) {
            max_ending_here = max_ending_here * arr[i];
            min_ending_here = min(min_ending_here * arr[i], 1);
            flag = 1;
        }

        /* If this element is 0, then the maximum product
        cannot end here, make both max_ending_here and
        min_ending_here 0
        Assumption: Output is alway greater than or equal
                    to 1. */
        else if (arr[i] == 0) {
            max_ending_here = 1;
            min_ending_here = 1;
        }

       
       /* If element is negative. This is tricky 
        max_ending_here can either be 1 or positive. 
        min_ending_here can either be 1 or negative. 
        next max_ending_here will always be prev. 
        min_ending_here * arr[i] ,next min_ending_here 
        will be 1 if prev max_ending_here is 1, otherwise 
        next min_ending_here will be prev max_ending_here * 
        arr[i] */

        else {
            int temp = max_ending_here;
            max_ending_here = max(min_ending_here * arr[i], 1);
            min_ending_here = temp * arr[i];
        }

        // update max_so_far, if needed
        if (max_so_far < max_ending_here)
            max_so_far = max_ending_here;
    }
    if (flag == 0 && max_so_far == 1)
        return 0;
    return max_so_far;
}

// Driver code
int main()
{
    int arr[] = { 1, -2, -3, 0, 7, -8, -2 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << "Maximum Sub array product is "
         << maxSubarrayProduct(arr, n);
    return 0;
}

// This is code is contributed by rathbhupendra
Output:
Maximum Sub array product is 112
Time Complexity: O(n)
Auxiliary Space: O(1)

[5] Minimum number of jumps to reach end
Given an array of integers where each element represents the max number of steps that can be made forward from that element. Write a function to return the minimum number of jumps to reach the end of the array (starting from the first element). If an element is 0, then cannot move through that element.

Example:

Input: arr[] = {1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9}
Output: 3 (1-> 3 -> 8 ->9)
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;

// Function to return the minimum number
// of jumps to reach arr[h] from arr[l]
int minJumps(int arr[], int n)
{

    // Base case: when source and
    // destination are same
    if (n == 1)
        return 0;

    // Traverse through all the points
    // reachable from arr[l]
    // Recursivel, get the minimum number
    // of jumps needed to reach arr[h] from
    // these reachable points
    int res = INT_MAX;
    for (int i = n - 2; i >= 0; i--) {
        if (i + arr[i] >= n - 1) {
            int sub_res = minJumps(arr, i + 1);
            if (sub_res != INT_MAX)
                res = min(res, sub_res + 1);
        }
    }

    return res;
}

// Driver Code
int main()
{
    int arr[] = { 1, 3, 6, 3, 2,
                  3, 6, 8, 9, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << "Minimum number of jumps to";
    cout << " reach the end is " << minJumps(arr, n);
    return 0;
}
Output:
Minimum number of jumps to reach end is 4

Comments

Popular posts from this blog

[13 Feb 2020] Check if a given sequence of moves for a robot is circular or not

[16 Feb 2020] Given an array where every element occurs three times, except one element which occurs only once.

Which data structure is used in redo-undo feature?