Given a set of non-negative integers, and a value sum, determine if there is a subset of the given set with sum equal to given sum.



Subset Sum Problem | DP-25
Given a set of non-negative integers, and a value sum, determine if there is a subset of the given set with sum equal to given sum.
Example:

Input:  set[] = {3, 34, 4, 12, 5, 2}, sum = 9
Output:  True  //There is a subset (4, 5) with sum 9.

// A recursive solution for subset sum problem
#include <stdio.h>
  
// Returns true if there is a subset of set[] with sun equal to given sum
bool isSubsetSum(int set[], int n, int sum)
{
   // Base Cases
   if (sum == 0)
     return true;
   if (n == 0 && sum != 0)
     return false;
  
   // If last element is greater than sum, then ignore it
   if (set[n-1] > sum)
     return isSubsetSum(set, n-1, sum);
  
   /* else, check if sum can be obtained by any of the following
      (a) including the last element
      (b) excluding the last element   */
   return isSubsetSum(set, n-1, sum) || 
                        isSubsetSum(set, n-1, sum-set[n-1]);
}
  
// Driver program to test above function
int main()
{
  int set[] = {3, 34, 4, 12, 5, 2};
  int sum = 9;
  int n = sizeof(set)/sizeof(set[0]);
  if (isSubsetSum(set, n, sum) == true)
     printf("Found a subset with given sum");
  else
     printf("No subset with given sum");
  return 0;
}

Output:
Found a subset with given sum
// A recursive solution for subset sum
// problem
class GFG {
      
    // Returns true if there is a subset
    // of set[] with sum equal to given sum
    static boolean isSubsetSum(int set[],
                            int n, int sum)
    {
        // Base Cases
        if (sum == 0)
            return true;
        if (n == 0 && sum != 0)
            return false;
          
        // If last element is greater than 
        // sum, then ignore it
        if (set[n-1] > sum)
            return isSubsetSum(set, n-1, sum);
          
        /* else, check if sum can be obtained 
        by any of the following
            (a) including the last element
            (b) excluding the last element */
        return isSubsetSum(set, n-1, sum) || 
            isSubsetSum(set, n-1, sum-set[n-1]);
    }
      
    /* Driver program to test above function */
    public static void main (String args[])
    {
        int set[] = {3, 34, 4, 12, 5, 2};
        int sum = 9;
        int n = set.length;
        if (isSubsetSum(set, n, sum) == true)
            System.out.println("Found a subset"
                          + " with given sum");
        else
            System.out.println("No subset with"
                               + " given sum");
    }
}
  
/* This code is contributed by Rajat Mishra */
Output:
Found a subset with given sum

# A recursive solution for subset sum
# problem
  
# Returns true if there is a subset 
# of set[] with sun equal to given sum
def isSubsetSum(set,n, sum) :
    
    # Base Cases
    if (sum == 0) :
        return True
    if (n == 0 and sum != 0) :
        return False
   
    # If last element is greater than
    # sum, then ignore it
    if (set[n - 1] > sum) :
        return isSubsetSum(set, n - 1, sum);
   
    # else, check if sum can be obtained
    # by any of the following
    # (a) including the last element
    # (b) excluding the last element   
    return isSubsetSum(set, n-1, sum) or isSubsetSum(set, n-1, sum-set[n-1])
      
      
# Driver program to test above function
set = [3, 34, 4, 12, 5, 2]
sum = 9
n = len(set)
if (isSubsetSum(set, n, sum) == True) :
    print("Found a subset with given sum")
else :
    print("No subset with given sum")
      














































































Comments

Popular posts from this blog

[13 Feb 2020] Check if a given sequence of moves for a robot is circular or not

[1] C++ Interview Questions