[04 Feb 2020] Longest Common Subsequence

Longest Common Subsequence
Examples:
LCS for input Sequences “ABCDGH” and “AEDFHR” is “ADH” of length 3.
LCS for input Sequences “AGGTAB” and “GXTXAYB” is “GTAB” of length 4.

1) Optimal Substructure:
Let the input sequences be X[0..m-1] and Y[0..n-1] of lengths m and n respectively. And let L(X[0..m-1], Y[0..n-1]) be the length of LCS of the two sequences X and Y. Following is the recursive definition of L(X[0..m-1], Y[0..n-1]).
If last characters of both sequences match (or X[m-1] == Y[n-1]) then
L(X[0..m-1], Y[0..n-1]) = 1 + L(X[0..m-2], Y[0..n-2])
If last characters of both sequences do not match (or X[m-1] != Y[n-1]) then
L(X[0..m-1], Y[0..n-1]) = MAX ( L(X[0..m-2], Y[0..n-1]), L(X[0..m-1], Y[0..n-2]) )
Examples:
1) Consider the input strings “AGGTAB” and “GXTXAYB”. Last characters match for the strings. So length of LCS can be written as:
L(“AGGTAB”, “GXTXAYB”) = 1 + L(“AGGTA”, “GXTXAY”)
longest-common-subsequence
2) Consider the input strings “ABCDGH” and “AEDFHR. Last characters do not match for the strings. So length of LCS can be written as:
L(“ABCDGH”, “AEDFHR”) = MAX ( L(“ABCDG”, “AEDFHR”), L(“ABCDGH”, “AEDFH”) )
So the LCS problem has optimal substructure property as the main problem can be solved using solutions to subproblems.
2) Overlapping Subproblems:
Following is simple recursive implementation of the LCS problem. The implementation simply follows the recursive structure mentioned above.
/* A Naive recursive implementation of LCS problem */
#include <bits/stdc++.h> 
using namespace std;   
int max(int a, int b);  
/* Returns length of LCS for X[0..m-1], Y[0..n-1] */
int lcs( char *X, char *Y, int m, int n )  
{  
    if (m == 0 || n == 0)  
        return 0;  
    if (X[m-1] == Y[n-1])  
        return 1 + lcs(X, Y, m-1, n-1);  
    else
        return max(lcs(X, Y, m, n-1), lcs(X, Y, m-1, n));  
}  
/* Utility function to get max of 2 integers */
int max(int a, int b)  
{  
    return (a > b)? a : b;  
}  
/* Driver code */
int main()  
{  
    char X[] = "AGGTAB";  
    char Y[] = "GXTXAYB";       
    int m = strlen(X);  
    int n = strlen(Y);       
    cout<<"Length of LCS is "<< lcs( X, Y, m, n ) ;      
    return 0;  
Output:
Length of LCS is 4
# A Naive recursive Python implementation of LCS problem  
def lcs(X, Y, m, n):   
    if m == 0 or n == 0: 
       return 0; 
    elif X[m-1] == Y[n-1]: 
       return 1 + lcs(X, Y, m-1, n-1); 
    else: 
       return max(lcs(X, Y, m, n-1), lcs(X, Y, m-1, n)); 
# Driver program to test the above function 
X = "AGGTAB"
Y = "GXTXAYB"
print "Length of LCS is ", lcs(X , Y, len(X), len(Y)) 
Output:
Length of LCS is 4
/* Dynamic Programming C++ implementation of LCS problem */
#include<bits/stdc++.h>  
using namespace std;  
int max(int a, int b);  
/* Returns length of LCS for X[0..m-1], Y[0..n-1] */
int lcs( char *X, char *Y, int m, int n )  
{  
    int L[m + 1][n + 1];  
    int i, j;      
    /* Following steps build L[m+1][n+1] in  
       bottom up fashion. Note that L[i][j]  
       contains length of LCS of X[0..i-1] 
       and Y[0..j-1] */
    for (i = 0; i <= m; i++)  
    {  
        for (j = 0; j <= n; j++)  
        {  
        if (i == 0 || j == 0)  
            L[i][j] = 0;        
        else if (X[i - 1] == Y[j - 1])  
            L[i][j] = L[i - 1][j - 1] + 1;      
        else
            L[i][j] = max(L[i - 1][j], L[i][j - 1]);  
        }  
    }          
    /* L[m][n] contains length of LCS  
    for X[0..n-1] and Y[0..m-1] */
    return L[m][n];  
}  
/* Utility function to get max of 2 integers */
int max(int a, int b)  
{  
    return (a > b)? a : b;  
}  
  
// Driver Code 
int main()  
{  
    char X[] = "AGGTAB";  
    char Y[] = "GXTXAYB";      
    int m = strlen(X);  
    int n = strlen(Y);      
    cout << "Length of LCS is " 
         << lcs( X, Y, m, n );      
    return 0;  
}  
  Output:
Length of LCS is 4
# Dynamic Programming implementation of LCS problem 
  
def lcs(X , Y): 
    # find the length of the strings 
    m = len(X) 
    n = len(Y) 
  
    # declaring the array for storing the dp values 
    L = [[None]*(n+1) for i in xrange(m+1)] 
  
    """Following steps build L[m+1][n+1] in bottom up fashion 
    Note: L[i][j] contains length of LCS of X[0..i-1] 
    and Y[0..j-1]"""
    for i in range(m+1): 
        for j in range(n+1): 
            if i == 0 or j == 0 : 
                L[i][j] = 0
            elif X[i-1] == Y[j-1]: 
                L[i][j] = L[i-1][j-1]+1
            else: 
                L[i][j] = max(L[i-1][j] , L[i][j-1]) 
  
    # L[m][n] contains the length of LCS of X[0..n-1] & Y[0..m-1] 
    return L[m][n] 
#end of function lcs   
# Driver program to test the above function 
X = "AGGTAB"
Y = "GXTXAYB"
print "Length of LCS is ", lcs(X, Y)
Output:
Length of LCS is 4

Comments

Popular posts from this blog

Important Program Collection

[16 Feb 2020] Given an array where every element occurs three times, except one element which occurs only once.

Which data structure is used in redo-undo feature?