[23] Find top k (or most frequent) numbers in a stream

Given an array of n numbers. Your task is to read numbers from the array and keep at-most K numbers at the top (According to their decreasing frequency) every time a new number is read. We basically need to print top k numbers sorted by frequency when input stream has included k distinct elements, else need to print all distinct elements sorted by frequency.

Examples:

Input :  arr[] = {5, 2, 1, 3, 2}
             k = 4
Output : 5 2 5 1 2 5 1 2 3 5 2 1 3 5

Input  : arr[] = {5, 2, 1, 3, 4}
             k = 4
Output : 5 2 5 1 2 5 1 2 3 5 1 2 3 4
Expected time complexity is O(n * k)

Given an array of n numbers. Your task is to read numbers from the array and keep at-most K numbers at the top (According to their decreasing frequency) every time a new number is read. We basically need to print top k numbers sorted by frequency when input stream has included k distinct elements, else need to print all distinct elements sorted by frequency.

Examples:

Input :  arr[] = {5, 2, 1, 3, 2}
             k = 4
Output : 5 2 5 1 2 5 1 2 3 5 2 1 3 5

Input  : arr[] = {5, 2, 1, 3, 4}
             k = 4
Output : 5 2 5 1 2 5 1 2 3 5 1 2 3 4
Expected time complexity is O(n * k)

Explanation of 1st example:
Given array is arr[] = {5, 2, 1, 3, 2} and k = 4
Step 1:After reading 5, there is only one element 5 whose frequency is max till now. so print 5.
Step 2:After reading 2, we will have two elements 2 and 5 with same frequency. As 2, is smaller than 5 but their frequency is same so we will print 2 5.
Step 3: After reading 1, we will have 3 elements 1,2 and 5 with same frequency, so print 1 2 5.
Step 4: Similarly after reading 3, print 1 2 3 5
Step 5: After reading last element 2, since 2 has already occurred so we have now frequency of 2 as 2. So we keep 2 at the top and then rest of element with same frequency in sorted order. So print, 2 1 3 5.

Below is the step by step algorithm to do this:

Iterate through the array which contains stream of numbers.
To keep track of top k elements, make a top vector of size k+1.
For every element in the stream increase its frequency and store it in the last position of top vector. We can use hashing for efficiently fetching frequency of an element and increasing it.
Now find the position of element in top vector and iterate from that position to zero. For finding position we can make use of the find() function in C++ STL, it returns an iterator pointing to element if found in the vector.
And make that list of k+1 numbers sorted according to frequency and their value.
Print top k elements form top vector.
Repeat the above steps for every element in the stream.
Below is the implementation of above idea:

// C++ program to find top k elements in a stream
#include <bits/stdc++.h>
using namespace std;

// Function to print top k numbers
void kTop(int a[], int n, int k)
{
    // vector of size k+1 to store elements
    vector<int> top(k + 1);

    // array to keep track of frequency
    unordered_map<int, int> freq;

    // iterate till the end of stream
    for (int m = 0; m < n; m++)
    {
        // increase the frequency
        freq[a[m]]++;

        // store that element in top vector
        top[k] = a[m];

        // search in top vector for same element
        auto it = find(top.begin(), top.end() - 1, a[m]);

        // iterate from the position of element to zero
        for (int i = distance(top.begin(), it) - 1; i >= 0; --i)
        {
            // compare the frequency and swap if higher
            // frequency element is stored next to it
            if (freq[top[i]] < freq[top[i + 1]])
                swap(top[i], top[i + 1]);

            // if frequency is same compare the elements
            // and swap if next element is high
            else if ((freq[top[i]] == freq[top[i + 1]])
                     && (top[i] > top[i + 1]))
                swap(top[i], top[i + 1]);
            else
                break;
        }

        // print top k elements
        for (int i = 0; i < k && top[i] != 0; ++i)
            cout << top[i] << ' ';
    }
    cout << endl;
}

// Driver program to test above function
int main()
{
    int k = 4;
    int arr[] = { 5, 2, 1, 3, 2 };
    int n = sizeof(arr)/sizeof(arr[0]);
    kTop(arr, n, k);
    return 0;
}

Output:
5 2 5 1 2 5 1 2 3 5 2 1 3 5
Time Complexity: O( n * k )


import java.io.*;
import java.util.*;
class GFG {

      // function to search in top vector for element
      static int find(int[] arr, int ele)
      {
             for (int i = 0; i < arr.length; i++)
                  if (arr[i] == ele)
                      return i;
             return -1;
      }
 
      // Function to print top k numbers
      static void kTop(int[] a, int n, int k)
      {
             // vector of size k+1 to store elements
             int[] top = new int[k + 1];

             // array to keep track of frequency
             HashMap<Integer, Integer> freq = new HashMap<>();
             for (int i = 0; i < k + 1; i++)
                  freq.put(i, 0);

             // iterate till the end of stream
             for (int m = 0; m < n; m++)
             {
                  // increase the frequency
                  if (freq.containsKey(a[m]))
                      freq.put(a[m], freq.get(a[m]) + 1);
                  else
                      freq.put(a[m], 1);

                  // store that element in top vector
                  top[k] = a[m];

                  // search in top vector for same element
                  int i = find(top, a[m]);
                  i -= 1;

                  // iterate from the position of element to zero
                  while (i >= 0)
                  {
                         // compare the frequency and swap if higher
                         // frequency element is stored next to it
                         if (freq.get(top[i]) < freq.get(top[i + 1]))
                         {
                              int temp = top[i];
                              top[i] = top[i + 1];
                              top[i + 1] = temp;
                         }

                         // if frequency is same compare the elements
                         // and swap if next element is high
                         else if ((freq.get(top[i]) == freq.get(top[i + 1])) &&
                                             (top[i] > top[i + 1]))
                         {
                                 int temp = top[i];
                                 top[i] = top[i + 1];
                                 top[i + 1] = temp;
                         }
       
                         else
                                 break;
                         i -= 1;
                  }

                  // print top k elements
                  for (int j = 0; j < k && top[j] != 0; ++j)
                       System.out.print(top[j] + " ");
             }
             System.out.println();
      }

      // Driver program to test above function
      public static void main(String args[])
      {
             int k = 4;
             int[] arr = { 5, 2, 1, 3, 2 };
             int n = arr.length;
             kTop(arr, n, k);
      }
}

// This code is contributed by rachana soma

Output:
5 2 5 1 2 5 1 2 3 5 2 1 3 5
Time Complexity: O( n * k )

# Python program to find top k elements in a stream

# Function to print top k numbers
def kTop(a, n, k):

    # list of size k+1 to store elements
    top = [0 for i in range(k + 1)]
 
    # dictionary to keep track of frequency
    freq = {i:0 for i in range(k + 1)}

    # iterate till the end of stream
    for m in range(n):

        # increase the frequency
        if a[m] in freq.keys():
            freq[a[m]] += 1
        else:
            freq[a[m]] = 1

        # store that element in top vector
        top[k] = a[m]
 
        i = top.index(a[m])
        i -= 1
       
        while i >= 0:

            # compare the frequency and swap if higher
            # frequency element is stored next to it
            if (freq[top[i]] < freq[top[i + 1]]):
                t = top[i]
                top[i] = top[i + 1]
                top[i + 1] = t
           
            # if frequency is same compare the elements
            # and swap if next element is high
            elif ((freq[top[i]] == freq[top[i + 1]]) and (top[i] > top[i + 1])):
                t = top[i]
                top[i] = top[i + 1]
                top[i + 1] = t
            else:
                break
            i -= 1
       
        # print top k elements
        i = 0
        while i < k and top[i] != 0:
            print top[i],
            i += 1
    print
 
# Driver program to test above function
k = 4
arr = [ 5, 2, 1, 3, 2 ]
n = len(arr)
kTop(arr, n, k)

# This code is contributed by Sachin Bisht

Output:
5 2 5 1 2 5 1 2 3 5 2 1 3 5
Time Complexity: O( n * k )

Comments

Popular posts from this blog

Important Program Collection

[16 Feb 2020] Given an array where every element occurs three times, except one element which occurs only once.

Which data structure is used in redo-undo feature?