Write an efficient program to find the sum of contiguous subarray within a one-dimensional array of numbers which has the largest sum.
#include<iostream>
#include<climits>
using namespace std;
int maxSubArraySum( int a[], int size)
{
int max_so_far = INT_MIN, max_ending_here = 0;
for ( int i = 0; i < size; i++)
{
max_ending_here = max_ending_here + a[i];
if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
if (max_ending_here < 0)
max_ending_here = 0;
}
return max_so_far;
}
int main()
{
int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};
int n = sizeof (a)/ sizeof (a[0]);
int max_sum = maxSubArraySum(a, n);
cout << "Maximum contiguous sum is " << max_sum;
return 0;
}
|
Output:
Maximum contiguous sum is 7
import java.io.*;
import java.util.*;
class Kadane
{
public static void main (String[] args)
{
int [] a = {- 2 , - 3 , 4 , - 1 , - 2 , 1 , 5 , - 3 };
System.out.println( "Maximum contiguous sum is " +
maxSubArraySum(a));
}
static int maxSubArraySum( int a[])
{
int size = a.length;
int max_so_far = Integer.MIN_VALUE, max_ending_here = 0 ;
for ( int i = 0 ; i < size; i++)
{
max_ending_here = max_ending_here + a[i];
if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
if (max_ending_here < 0 )
max_ending_here = 0 ;
}
return max_so_far;
}
}
|
Output:
Maximum contiguous sum is 7
from sys import maxint
def maxSubArraySum(a,size):
max_so_far = - maxint - 1
max_ending_here = 0
for i in range ( 0 , size):
max_ending_here = max_ending_here + a[i]
if (max_so_far < max_ending_here):
max_so_far = max_ending_here
if max_ending_here < 0 :
max_ending_here = 0
return max_so_far
a = [ - 13 , - 3 , - 25 , - 20 , - 3 , - 16 , - 23 , - 12 , - 5 , - 22 , - 15 , - 4 , - 7 ]
print "Maximum contiguous sum is" , maxSubArraySum(a, len (a))
|
Output:
Maximum contiguous sum is 7
Comments
Post a Comment