[10 Feb 2020] Largest Sum Contiguous Subarray



Largest Sum Contiguous Subarray


Write an efficient program to find the sum of contiguous subarray within a one-dimensional array of numbers which has the largest sum.
kadane-algorithm

// C++ program to print largest contiguous array sum
#include<iostream>
#include<climits>
using namespace std;
  
int maxSubArraySum(int a[], int size)
{
    int max_so_far = INT_MIN, max_ending_here = 0;
  
    for (int i = 0; i < size; i++)
    {
        max_ending_here = max_ending_here + a[i];
        if (max_so_far < max_ending_here)
            max_so_far = max_ending_here;
  
        if (max_ending_here < 0)
            max_ending_here = 0;
    }
    return max_so_far;
}
  
/*Driver program to test maxSubArraySum*/
int main()
{
    int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};
    int n = sizeof(a)/sizeof(a[0]);
    int max_sum = maxSubArraySum(a, n);
    cout << "Maximum contiguous sum is " << max_sum;
    return 0;
}

Output:
Maximum contiguous sum is 7

import java.io.*;
// Java program to print largest contiguous array sum
import java.util.*;
  
class Kadane
{
    public static void main (String[] args)
    {
        int [] a = {-2, -3, 4, -1, -2, 1, 5, -3};
        System.out.println("Maximum contiguous sum is " +
                                       maxSubArraySum(a));
    }
  
    static int maxSubArraySum(int a[])
    {
        int size = a.length;
        int max_so_far = Integer.MIN_VALUE, max_ending_here = 0;
  
        for (int i = 0; i < size; i++)
        {
            max_ending_here = max_ending_here + a[i];
            if (max_so_far < max_ending_here)
                max_so_far = max_ending_here;
            if (max_ending_here < 0)
                max_ending_here = 0;
        }
        return max_so_far;
    }
}

Output:
Maximum contiguous sum is 7

# Python program to find maximum contiguous subarray
   
# Function to find the maximum contiguous subarray
from sys import maxint
def maxSubArraySum(a,size):
       
    max_so_far = -maxint - 1
    max_ending_here = 0
       
    for i in range(0, size):
        max_ending_here = max_ending_here + a[i]
        if (max_so_far < max_ending_here):
            max_so_far = max_ending_here
  
        if max_ending_here < 0:
            max_ending_here = 0   
    return max_so_far
   
# Driver function to check the above function 
a = [-13, -3, -25, -20, -3, -16, -23, -12, -5, -22, -15, -4, -7]
print "Maximum contiguous sum is", maxSubArraySum(a,len(a))
   
#This code is contributed by _Devesh Agrawal_

Output:
Maximum contiguous sum is 7






























































































Comments

Popular posts from this blog

Important Program Collection

[16 Feb 2020] Given an array where every element occurs three times, except one element which occurs only once.

Which data structure is used in redo-undo feature?