Most typical Programs


/*
Sum of all odd frequency elements in an array
Given an array of integers containing duplicate elements. The task is to find the sum of all odd occurring elements in the given
array. That is the sum of all such elements whose frequency is odd in the array.

Examples:

Input : arr[] = {1, 1, 2, 2, 3, 3, 3}
Output : 9
The odd occurring element is 3, and it's number
of occurrence is 3. Therefore sum of all 3's in the
array = 9.

Input : arr[] = {10, 20, 30, 40, 40}
Output : 60
Elements with odd frequency are 10, 20 and 30.
Sum = 60.
*/
int SumOfOddOccuringElements(int arr[], int size)
{
      map<int, int>Map;
      map<int, int>::iterator itr;
      for (int i = 0;i<size;i++)
      {
            Map[arr[i]]++;
      }
      int sum = 0;
      for (itr = Map.begin(); itr!= Map.end(); ++itr)
      {
            if ((itr->second)%2 == 1)
            {
                  sum = sum + (itr->second)*(itr->first);
            }
      }
      return (sum);
}



/*
Calculate the angle between hour hand and minute hand
This problem is know as Clock angle problem where we need to find angle between hands of an analog clock at a given time.
Examples:
Input:  h = 12:00, m = 30.00
Output: 165 degree

Input:  h = 3.00, m = 30.00
Output: 75 degree
The idea is to take 12:00 (h = 12, m = 0) as a reference. Following are detailed steps.
1) Calculate the angle made by hour hand with respect to 12:00 in h hours and m minutes.
2) Calculate the angle made by minute hand with respect to 12:00 in h hours and m minutes.
3) The difference between two angles is the angle between two hands.
How to calculate the two angles with respect to 12:00?
The minute hand moves 360 degree in 60 minute(or 6 degree in one minute) and hour hand moves 360 degree in
12 hours(or 0.5 degree in 1 minute). In h hours and m minutes, the minute hand would move (h*60 + m)*6 and hour hand
would move (h*60 + m)*0.5.
*/
void calAngle(int h, int m)
{
    if (h <0 || m < 0 || h >12 || m > 60)
        printf("Wrong input");

      if (h == 12)
      {
            h = 0;
      }
      if (m == 60)
      {
            m = 0;
      }

      int hourAngle = 0.5*(60*h + m);
      int minuteAngle = 6*m;

      int angle = abs(hourAngle - minuteAngle);

      angle = min(360-angle, angle);

      cout<<angle<<endl;
}


/*
Printing Longest Common Subsequence
Given two sequences, print the longest subsequence present in both of them.
Examples:
LCS for input Sequences “ABCDGH” and “AEDFHR” is “ADH” of length 3.
LCS for input Sequences “AGGTAB” and “GXTXAYB” is “GTAB” of length 4.

We have discussed Longest Common Subsequence (LCS) problem in a previous post. The function discussed there was mainly to find the length of LCS. To find length of LCS, a 2D table L[][] was constructed. In this post, the function to construct and print LCS is discussed.

Following is detailed algorithm to print the LCS. It uses the same 2D table L[][].

1) Construct L[m+1][n+1] using the steps discussed in previous post.

2) The value L[m][n] contains length of LCS. Create a character array lcs[] of length equal to the length of lcs plus 1 (one extra to store \0).

2) Traverse the 2D array starting from L[m][n]. Do following for every cell L[i][j]
…..a) If characters (in X and Y) corresponding to L[i][j] are same (Or X[i-1] == Y[j-1]), then include this character as part of LCS.
…..b) Else compare values of L[i-1][j] and L[i][j-1] and go in direction of greater value.
*/
/* Returns length of LCS for X[0..m-1], Y[0..n-1] */
#include<iostream>
#include<cstring>
#include<cstdlib>
void lcs( char *X, char *Y, const int m, const int n )
{
   int L[10][10];
  
 
   /* Following steps build L[m+1][n+1] in bottom up fashion. Note
      that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */
   for (int i=0; i<=m; i++)
   {
     for (int j=0; j<=n; j++)
     {
       if (i == 0 || j == 0)
         L[i][j] = 0;
       else if (X[i-1] == Y[j-1])
         L[i][j] = L[i-1][j-1] + 1;
       else
         L[i][j] = max(L[i-1][j], L[i][j-1]);
     }
   }
 
   // Following code is used to print LCS
   int index = L[m][n];
 
   // Create a character array to store the lcs string
   char lcs[10];
   if (index!= 0)
            lcs[index] = '\0'; // Set the terminating character
 
   // Start from the right-most-bottom-most corner and
   // one by one store characters in lcs[]
   int i = m, j = n;
   while (i > 0 && j > 0)
   {
      // If current character in X[] and Y are same, then
      // current character is part of LCS
      if (X[i-1] == Y[j-1])
      {
          lcs[index-1] = X[i-1]; // Put current character in result
          i--; j--; index--;     // reduce values of i, j and index
      }
 
      // If not same, then find the larger of two and
      // go in the direction of larger value
      else if (L[i-1][j] > L[i][j-1])
         i--;
      else
         j--;
   }
 
   // Print the lcs
   cout << "LCS of " << X << " and " << Y << " is " << lcs<<endl<<endl;
}


/*
convert a number m to n with minimum operations. The operations allowed were -1 and *2.
For Eg : 4 and 6. Answer is 2.
1st operation : -1 -> 4-1 = 3.
2nd operation : * -> 3 * 2 =6.
*/

int converNumber(int m, int n)
{
      if (m == 0|| n == 0)
      {
            return 0;
      }
      if (m>n)
      {
            return (m-n);
      }

      if (m <= 0 && n>0)
      {
            return (-1);
      }

      if (n %2 == 1)
      {
            return 1 + converNumber(m -1, n);
      }
      else
      {
            return 1 + converNumber(m, n%2);
      }
}

/*
Remove duplicates from unsorted array
Given an unsorted array of integers, Print the array after removing the duplicate elements from it.
We need to print distinct array elements according to their first occurrence.

Examples:

Input : arr[] = { 1, 2, 5, 1, 7, 2, 4, 2}
Output : 1 2 5 7 4
Explanation : {1, 2} appear more than one time.
Approach :

Take a hash map, in which will store all the elements which has appeared before.
Traverse the array.
Check if the element is present in the hash map.
If yes, continue traversing the array.
Else Print the element.
*/
#include<map>
void removeDuplicates(int arr[], int size)
{
      map<int, int>Map;
      for (int i = 0;i<size;i++)
      {
            Map[arr[i]] = Map[arr[i]] + 1;
      }
      int count = 0;
      map<int, int>::iterator itr;
      for (itr = Map.begin();itr!= Map.end(); ++itr)
      {
            cout<<itr->first<<"---------->"<<itr->second<<endl;
            if (itr->second >1)
            {
                  count++;
            }
      }
      cout<<"Number of duplicates elements = "<<count<<endl;
}



/*
Next Greater Element
Given an array, print the Next Greater Element (NGE) for every element. The Next greater Element for an element x is the first
greater element on the right side of x in array. Elements for which no greater element exist, consider next greater element as -1.

Examples:
a) For any array, rightmost element always has next greater element as -1.
b) For an array which is sorted in decreasing order, all elements have next greater element as -1.
c) For the input array [4, 5, 2, 25}, the next greater elements for each element are as follows.

Element       NGE
   4      -->   5
   5      -->   25
   2      -->   25
   25     -->   -1
*/

void printNextGreaterElement(int arr[], int size)
{
      stack<int>st;
      st.push(arr[0]);
      for (int i = 1;i<size;i++)
      {
            if (st.empty())
            {
                  st.push(arr[i]);
                  continue;
            }
            while(!st.empty()&&(arr[i]>=st.top()))
            {
                  cout<<st.top()<<"------------------>"<<arr[i]<<endl;
                  st.pop();
            }
            st.push(arr[i]);
      }
      while(!st.empty())
      {
            cout<<st.top()<<"------------------>"<<"-1"<<endl;
            st.pop();
      }
}



/*
Remove duplicates from a string in O(1) extra space
Given a string str of lowercase characters, the task is to remove duplicates and return a resultant string without modifying
the order of characters in the original string.

Examples:

Input: str = "geeksforgeeks"
Output: geksfor

Input: str = "characters"
Output: chartes
*/
string removeDuplicates(string str)
{
      int counter = 0;
      int x = 1;
      int j = 0;
      int len = 0;
      for(int i =0;i<str.length();i++)
      {
            x = str[i] - 97;
            if (0 == (counter&(1<<x)))
            {
                  counter = counter | (1<<x);
                  str[len] = x + 'a';
                  len++;
            }
      }
      string str1 = str.substr(0, len);
      return str1;

}

 

Next Smaller Element

Given an array, print the Next Smaller Element (NSE) for every element. The Smaller smaller Element for an element x is the first smaller element on the right side of x in array. Elements for which no smaller element exist (on right side), consider next smaller element as -1.
Examples:
a) For any array, rightmost element always has next smaller element as -1.
b) For an array which is sorted in increasing order, all elements have next smaller element as -1.
c) For the input array [4, 8, 5, 2, 25}, the next smaller elements for each element are as follows.
Element       NSE
   4      -->   2
   8      -->   5
   5      -->   2
   2      -->   -1
   25     -->   -1
d) For the input array [13, 7, 6, 12}, the next smaller elements for each element are as follows.
  Element        NSE
   13      -->    7
   7       -->    6
   6       -->    -1
   12     -->     -1
// A Stack based C++ program to find next
// smaller element for all array elements.
#include <bits/stdc++.h>
  
using namespace std;

void nextSmallerElement(int arr[], int size)
{
      stack<int>st;
      st.push(arr[0]);
      for(int i =1;i<size;i++)
      {
            while(!st.empty()&&st.top()>arr[i])
            {
                  cout<<st.top()<<"-------->"<<arr[i]<<endl;
                  st.pop();
            }
            st.push(arr[i]);
      }
      while (!st.empty())
      {
            cout<<st.top()<<"-------->"<<"-1"<<endl;
            st.pop();
      }
}

  
/* prints element and NSE pair for all
elements of arr[] of size n */
void printNSE(int arr[], int n)
{
    stack<int> s;
  
    /* push the first element to stack */
    s.push(arr[0]);
  
    // iterate for rest of the elements
    for (int i = 1; i < n; i++) {
  
        if (s.empty()) {
            s.push(arr[i]);
            continue;
        }
  
        /* if stack is not empty, then
       pop an element from stack.
       If the popped element is smaller
       than next, then
    a) print the pair
    b) keep popping while elements are
    smaller and stack is not empty */
        while (s.empty() == false && s.top() > arr[i]) {
            cout << s.top() << " --> " << arr[i] << endl;
            s.pop();
        }
  
        /* push next to stack so that we can find
    next smaller for it */
        s.push(arr[i]);
    }
  
    /* After iterating over the loop, the remaining
  elements in stack do not have the next smaller
  element, so print -1 for them */
    while (s.empty() == false) {
        cout << s.top() << " --> " << -1 << endl;
        s.pop();
    }
}
  
/* Driver program to test above functions */
int main()
{
    int arr[] = { 11, 13, 21, 3 };
    int n = sizeof(arr) / sizeof(arr[0]);
    printNSE(arr, n);
    return 0;
}
Output:
21 --> 3
13 --> 3
11 --> 3
3 --> -1
Time Complexity: O(n). The worst case occurs when all elements are sorted in increasing order. If elements are sorted in increasing order, then every element is processed at most 4 times.
a) Initially pushed to the stack.
b) Popped from the stack when next element is being processed.
c) Pushed back to the stack because next element is smaller.
d) Popped from the stack in step 3 of algo.

 

Given a sorted array and a number x, find the pair in array whose sum is closest to x

Given a sorted array and a number x, find a pair in array whose sum is closest to x.
Examples:
Input: arr[] = {10, 22, 28, 29, 30, 40}, x = 54
Output: 22 and 30
 
Input: arr[] = {1, 3, 4, 7, 10}, x = 15
Output: 4 and 10

 

void closestPair(int arr[], int size, int sum)
{
    int j = size - 1;
      int m = 0;
      int l = 0;
      int i =0;
      while(i<j)
      {
            if (arr[i] + arr[j] <= sum)
            {
                  m = i;
                  l = j;
                  i++;
                  j--;
            }
            else if (arr[i] + arr[j] > sum)
            {
                  j--;
            }
            else
            {
                  i++;
            }
      }
      cout<<"("<<m<<","<<l<<")";
}

// Simple C++ program to find the pair with sum closest to a given no.
#include <iostream>
#include <climits>
#include <cstdlib>
using namespace std;
  
// Prints the pair with sum closest to x
void printClosest(int arr[], int n, int x)
{
    int res_l, res_r;  // To store indexes of result pair
  
    // Initialize left and right indexes and difference between
    // pair sum and x
    int l = 0, r = n-1, diff = INT_MAX;
  
    // While there are elements between l and r
    while (r > l)
    {
       // Check if this pair is closer than the closest pair so far
       if (abs(arr[l] + arr[r] - x) < diff)
       {
           res_l = l;
           res_r = r;
           diff = abs(arr[l] + arr[r] - x);
       }
  
       // If this pair has more sum, move to smaller values.
       if (arr[l] + arr[r] > x)
           r--;
       else // Move to larger values
           l++;
    }
  
    cout <<" The closest pair is " << arr[res_l] << " and " << arr[res_r];
}
  
// Driver program to test above functions
int main()
{
    int arr[] =  {10, 22, 28, 29, 30, 40}, x = 54;
    int n = sizeof(arr)/sizeof(arr[0]);
    printClosest(arr, n, x);
    return 0;
}

 

Longest subarray having maximum sum

Given an array arr[] containing n integers. The problem is to find the length of the subarray having maximum sum. If there exists two or more subarrays with maximum sum then print the length of the longest subarray.
Examples:
Input : arr[] = {5, -2, -1, 3, -4}
Output : 4
There are two subarrays with maximum sum:
First is {5}
Second is {5, -2, -1, 3}
Therefore longest one is of length 4.
 
Input : arr[] = {-2, -3, 4, -1, -2, 1, 5, -3}
Output : 5
The subarray is {4, -1, -2, 1, 5}
// C++ implementation to find the length of the longest
// subarray having maximum sum
#include <bits/stdc++.h>
using namespace std;
  
// function to find the maximum sum that
// exists in a subarray
int maxSubArraySum(int arr[], int size)
{
    int max_so_far = arr[0];
    int curr_max = arr[0];
  
    for (int i = 1; i < size; i++) {
        curr_max = max(arr[i], curr_max + arr[i]);
        max_so_far = max(max_so_far, curr_max);
    }
    return max_so_far;
}
  
// function to find the length of longest
// subarray having sum k
int lenOfLongSubarrWithGivenSum(int arr[], int n, int k)
{
    // unordered_map 'um' implemented
    // as hash table
    unordered_map<int, int> um;
    int sum = 0, maxLen = 0;
  
    // traverse the given array
    for (int i = 0; i < n; i++) {
  
        // accumulate sum
        sum += arr[i];
  
        // when subarray starts from index '0'
        if (sum == k)
            maxLen = i + 1;
  
        // make an entry for 'sum' if it is
        // not present in 'um'
        if (um.find(sum) == um.end())
            um[sum] = i;
  
        // check if 'sum-k' is present in 'um'
        // or not
        if (um.find(sum - k) != um.end()) {
  
            // update maxLength
            if (maxLen < (i - um[sum - k]))
                maxLen = i - um[sum - k];
        }
    }
  
    // required maximum length
    return maxLen;
}
  
// function to find the length of the longest
// subarray having maximum sum
int lenLongSubarrWithMaxSum(int arr[], int n)
{
    int maxSum = maxSubArraySum(arr, n);
    return lenOfLongSubarrWithGivenSum(arr, n, maxSum);
}
  
// Driver program to test above
int main()
{
    int arr[] = { 5, -2, -1, 3, -4 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << "Length of longest subarray having maximum sum = "
         << lenLongSubarrWithMaxSum(arr, n);
    return 0;
}

Power Set

Power Set Power set P(S) of a set S is the set of all subsets of S. For example S = {a, b, c} then P(s) = {{}, {a}, {b}, {c}, {a,b}, {a, c}, {b, c}, {a, b, c}}.
If S has n elements in it then P(s) will have 2^n elements
Set  = [a,b,c]
power_set_size = pow(2, 3) = 8
Run for binary counter = 000 to 111

Value of Counter            Subset
    000                    -> Empty set
    001                    -> a
    010                    -> b
    011                    -> ab
    100                    -> c
    101                    -> ac
    110                    -> bc
    111                    -> abc
#include <stdio.h>
#include <math.h>
  
void printPowerSet(char *set, int set_size)
{
    /*set_size of power set of a set with set_size
      n is (2**n -1)*/
    unsigned int pow_set_size = pow(2, set_size);
    int counter, j;
  
    /*Run from counter 000..0 to 111..1*/
    for(counter = 0; counter < pow_set_size; counter++)
    {
      for(j = 0; j < set_size; j++)
       {
          /* Check if jth bit in the counter is set
             If set then print jth element from set */
          if(counter & (1<<j))
            printf("%c", set[j]);
       }
       printf("\n");
    }
}
  
/*Driver program to test printPowerSet*/
int main()
{
    char set[] = {'a','b','c'};
    printPowerSet(set, 3);
    return 0;
}

Output :

a
b
ab
c
ac
bc
abc
Time Complexity: O(n2^n)

Output:
Length of longest subarray having maximum sum = 4

Time Complexity: O(n).
Auxiliary Space: O(n).







Hard Programs:-
[01] https://www.geeksforgeeks.org/find-maximum-in-a-stack-in-o1-time-and-o1-extra-space/
[02] https://www.geeksforgeeks.org/design-a-stack-that-supports-getmin-in-o1-time-and-o1-extra-space/
[03] https://www.geeksforgeeks.org/find-duplicates-in-on-time-and-constant-extra-space/
[04] https://www.geeksforgeeks.org/maximum-product-subarray/
[05] https://www.geeksforgeeks.org/maximum-product-subarray/
[06] https://www.geeksforgeeks.org/longest-subarray-having-maximum-sum/
[07] https://www.geeksforgeeks.org/next-smaller-element/
[08] https://www.geeksforgeeks.org/check-if-an-array-is-sorted-and-rotated-clockwise/
[09] https://www.geeksforgeeks.org/largest-sum-contiguous-subarray/
[10] https://www.geeksforgeeks.org/longest-sub-array-sum-k/
[11] https://www.geeksforgeeks.org/given-sorted-array-number-x-find-pair-array-whose-sum-closest-x/
[12] https://www.geeksforgeeks.org/remove-duplicates-from-a-string-in-o1-extra-space/
[13] https://www.geeksforgeeks.org/find-the-two-repeating-elements-in-a-given-array/
[14] https://www.geeksforgeeks.org/find-sum-non-repeating-distinct-elements-array/
[15] https://www.geeksforgeeks.org/find-the-nearest-smaller-numbers-on-left-side-in-an-array/
[16] https://www.youtube.com/watch?v=uFso48YRRao (Next Greater Element)
https://www.geeksforgeeks.org/next-greater-element/
[17] Next Smaller Element (Try it yourself solving it)
[18] https://www.geeksforgeeks.org/check-if-the-characters-in-a-string-form-a-palindrome-in-o1-extra-space/

[19]
Easy Programs:-
[1] https://www.geeksforgeeks.org/check-whether-two-strings-are-anagram-of-each-other/

Dynamic Programs
[1] https://www.geeksforgeeks.org/minimum-number-of-jumps-to-reach-end-of-a-given-array/


Not Solved Problems:-
[1] https://www.geeksforgeeks.org/shuffle-2n-integers-format-a1-b1-a2-b2-a3-b3-bn-without-using-extra-space/
[2] https://www.geeksforgeeks.org/minimum-number-of-jumps-to-reach-end-of-a-given-array/

streams Programs:-
[1] https://www.geeksforgeeks.org/select-a-random-number-from-stream-with-o1-space/


Stack/Queue Programs:-

[1] https://www.geeksforgeeks.org/queue-using-stacks/
[2] https://www.geeksforgeeks.org/implement-stack-using-queue/
[3] https://www.youtube.com/watch?v=uFso48YRRao (Next Greater Element)


Most Typical Problems:-
[1] https://www.geeksforgeeks.org/minimum-number-of-swaps-required-to-sort-an-array-set-2/
[2] https://www.geeksforgeeks.org/find-the-smallest-window-in-a-string-containing-all-characters-of-another-string/ [Not able to understand its solution]




























































































































Comments

Popular posts from this blog

Important Program Collection

[16 Feb 2020] Given an array where every element occurs three times, except one element which occurs only once.

Which data structure is used in redo-undo feature?